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LIST OF SYMBOLS

Bi = a value which when multiplied by the ith component of

velocity produces the ith component of momentum

Cv = heat capacity at constant volume

Cp = heat capacity at constant pressure

= any molecular property that is a function of n, pi,

and T

= Kronecker delta function

Cijk = Levi-Civita permutation function

e. = unit vector in i-direction
1

f = distribution function

Fi = i - component of a generalized force or torque

= generalized force or torque vector

= ratio of specific heats

H = Hamiltonian

I = moment of inertia

= impulse vector

k = Boltzmann's constant

'= coefficient of heat conductivity

m = mass

= coefficient of viscosity

n = molecular number density

N = number of molecules

ith component of molecular momentum
=p.i-

p = momentum vector of five dimensions
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pi =1 component of average molecular momentum

=th

P i- component of peculiar molecular momentum

p = thermodynamic pressure

qi = i-h dimension in Euclidean space

q = position vector in a Euclidean five space

Qj = heat flux in J-direction

rg = molecular radius of gyration

p = density

t = time

T = temperature

i-' = stress tensor

u,v,w,e = velocity components in each degree of freedom

v = linear velocity vector of three dimensions

w = angular velocity vector of two dimensions

V = volume

x,y,z,eo = the five independent coordinates of a rigid rotor

rP e g = the four independent variables specifying a

collision geometry in a Euclidean five space

Z = partition function

Subscripts

c = quantity at collision

o = value at an initial time

R = relative

a = pertaining to molecule a

b = pertaining to molecule b

i,j,k = indices
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Superscripts

= average quantity

= quantity after collision A

0= non-divergent quantity

-= vector quantity

-y = gas phase space

W= molecule phase space

= time derivative

s = symmetric tensor
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SECTION I

INTRODUCTION

This paper presents a derivation of the equations of motion

of a gas whose molecules may be modelled as rigid rotors. A

rigid rotor has three translational degrees of freedom and two

rotational degrees of freedom, but no provisions for vibration,

electronic excitation, or nuclear excitation. At moderate

temperatures, however, both quantum mechanics and statistical

thermodynamics show the rigid rotor to be an excellent model of

the diatomic gas molecule.

Beginning with the classical Liouville equation, the author

develops a "Boltzmann-type equation" governing the motion of a

rigid rotor. With the exception of four additional independent

variables due to angular momentum and orientation, the Boltzmann-

type equation is identical to the Boltzmann equation. The

Boltzmann-type equation is solved via the Hilbert-Enskog-Chapman -

theory1'2 for the first two terms of the expansion of the

distribution function. The governing equations of motion of the

gas are then derived by substituting those first two terms of the

distribution function expansion into the conservation equations

of mass, linear momentum, total angular momentum, and energy.

The resulting equations of motion mimic the Navier-Stokes

equations except with regard to the additional angular momentum

conservation equations, the molecular constants, the heat flux"..

vector, and the stress tensor.

The development of the Navier-Stokes equations from kinetic JW

theory is based upon a smooth-sphere molecular model possessing

three translational degrees of freedom only. Such a model is an

excellent representation of monatomic gas molecules at moderate

temperatures. The thermodynamic properties, i.e. equilibrium

properties, of monatomic gases differ significantly from those of
% .-
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the diatomic gases. Table 1 presents this difference and also

the excellent comparison between experimental results and

theoretical calculations based upon statistical thermodynamics

and the above molecular models. One purpose of this study is to

investigate whether weak non-equilibrium properties, i.e. flow

properties also strongly depend upon the gas type in question.

If the flow properties do strongly depend on the gas type the.

Navier-Stokes equations might be inaccurate when applied to some

air flows. However, we shall see that this is not the case.
Another purpose of the current work is to introduce greater -

rigor into the development of the Boltzmann-type equation than

had other workers?." "' Kirkwood" ' paved the way in this regard •;-..

the present work merely specializes his development.

Some preliminary definitions and conventions are in order.
The present work deals almost exclusively in a five-dimensional

Euclidean space. A "surface" in this space is defined to be a '

four-dimensional geometry, while a "volume" is a five-dimensional -'

geometry. Both vector and indicial notations are used in the

present derivation. The specific selection of one notation over

another is based upon the ease of interpretation. By convention,

when the integrand is a function of the momentum, the integral

limits are from negative infinity to positive infinity unless .

otherwise stated.

The governing equations of motion are next derived.

Important results and notable assumptions are then summarized and o-*

the paper closes with a discussion and a short conclusion.

Several mathematical developments appear in the appendices at the -

rear of the paper. .%

2- ."
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Table 1. Molecular Constants

MONATOMIC GASES

exp calc exp calc exp calc '.-
y y Proc Pr o s25°C s2 5 °c 0

He 1.666 1.667 0.664 0.667 126.3 125.3

Ne 1.64 1.667 0.675 0.667 146.5 145.5

Ar 1.666 1.667 0.659 0.667 155.0 154.0

Kr 1.68 1.667 0.656 0.667 164.2 163.2

Xe 1.67 1.667 0.649 0.667 169.8 168.9

DIATOMIC GASES

exp calc exp calc exp calc
yy Pro0 Pro0 S0

0 C 0 C $25oC S25°C

H2 1.405 1.400 0.710 130.7 129.7

HC1 1.39 1.400 0.881 -- 186.2 186.0

N? 1.405 1.400 0.722 191.5 190.8

CO 1.402 1.400 0.745 197.5 196.8
0, 1.396 1.400 0.718 205.1 195.1

?] 1.35 1.400 0.771 223.0 219.8

Experimental results at 25°C.

Entropy is in units of J/ K-mol.e. Results gathered from Refs. 3 and 4.

34

' "'% " 4"''% " .""" . 'Z '"'''." '" .' . "°". " 2 ". " """. .' " ' a" .% '" .' -'.°.° ." % - 4 4- % " °" % .% ' "• . °% °""3



W~~~~W ~ ~ T ~TV~ I Y J -r7 .- -.. p rw

:..

SECTION II

DEVELOPMENT OF THE GOVERNING EQUATIONS OF MOTION

.,

1. Derivation of the Boltzmann-type equation

The Liouville equation2

-- V , ,.. .

L(1

for the distribution function Yf L,'(P , Nt) in the gas phase

* space (PNqN) of systems of N molecules is the fundamental

equation of classical statistical mechanics. The Liouville

equation cannot generally be solved for Yf(N). Fortunately, such

detailed information as that contained in
(N) is not needed.

The present analysis shall be restricted to the first-order

distribution function, Yf(l) of molecule a in the sub-phase space
* * a

(p ,q )of y-space. Since,
a a

the distribution function Yf(l) is simply the integral of Yf(N)
a

over the sub phase space (p 0q.) where n is the set of all

molecules exclusive of molecule a:

%,.( 4a,.....3

S.,o 4



provided such an integral is finite. This requires Yf(N) 0i777--

sufficiently fast as pI, - The Liouville equation in

terms of ar(1) is thus

The Liouville equation is next specialized to the case of a

gas composed of rigid rotor molecules by substituting for the

Hamiltonian of a rigid rotor. The Hamiltonian of a rigid rotor

3
in an inertial reference frame is :

where x, y, and z are the Cartesian coordinates of the rotor's

center of mass and 6, *are the Euler angles of the rotor's -

orientation, such that

0<0(2.<1-A~

He is the potential due to effects external to the gas. H, the
intermolecular potential, is a function solely of the relative
locations and orientations of the molecules. Substituting the

rigid rotor Hamiltonian into equation four yields:

hl. .~'6

5

-V"



*~~~~F %-- . *...

where dx- 4 ;, >= s'. Ba i jL$_

4 0 j- = .Vi 2-
4: k Pi.;h" ; g2(I, :e) "~~i

The last term of equation six represents a torque causing the "

rotor to precess from a general rotation to a rotation where 9 is

fixed at ,r/2. However, since the momental ellipsoid of a rotor

is an infinitely long circular cylinder, the free rotation of a
rigid rotor is stable. Therefore, this precessional term exists

only in the presence of external torques. Such torques arise

from both He and H. The present analysis shall be restricted to

nonpolar molecules undergoing impulsive collisions so that the
precessional term vanishes. Since nonpolar molecules are

unaffected by external field torques, however, forces:

7 .- ,

The above two assumptions lead to the equation:

'. -8

Since 6.

9

equation eight may be rewritten with the aid of equation two as:

(1 M1 .
:t. 41 _* _ p~.)~t (1)

i - al -J L

% 6%
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The right-hand term of equation 10 is the collision integral.

The collisional integral must be reduced to be a function of

a Appendix A follows Kirkwood's work
s'9 for the reduction.

By assuming the gas to be dilute and in molecular chaos, we find

equation 10 to be equal to:

;.%
'.0

awhee iachrceitctmlogin oprsn otee'

'.%

duration of a collision but short in comparison to a Poincare "

8cycle

Appendix B develops the actual equations of motion governing

binary collisions between rigid rotors. For any given direct .. :

collision between impulsively colliding rigid rotors, we see that

there exists an inverse collision. The existence of inverse

collisions is of crucial importance to the present work.

Boltzmann's H-Theorem may be shown to hold for rigid rotors and

the relation

dpadPb - dp dp, 13

holds.

The relative spatial coordinate, qR' deserves further

consideration. The coordinate is a five-space volume. Only the

7
-.

•.



portion of five space in which a type b molecule is able to
collide with a type a molecule within time T contributes to the

collision integral. This portion of five space may be considered

as a five-space cylinder with the generator IVR. The vector,

'R' is the relative velocity of the points of collision. From

the development in Appendix C, it is straightforward to show ',-.- ,

IV ITTSid-*1rj jCJS 1

is the volume of the five-space cylinder in question. Equation

11 is thus:

__-, -a15

Special attention must be paid to the regularity of the base

of the five-space cylinder:

1* 3.
C I esrw-~4 16

This surface may not be regular for a true rotor. In terms of

the variables of Appendix B, the surface is piecewise continuous

when

CoS - IIlf I 17

Therefore, the regularity of the collision surface is in question

until a transformation is made to from the variables of Appendix

B to the variables of Appendix C. If the collision surface is

not regular along the curve in question, the collision integral

will have to be separately evaluated over each regular surface.

8

............ .. . * .r %. P_ ..-. .. *. .



,-. %

Equation 15 is identical in form to the Boltzmann equation

but has an additional four independent variables corresponding to

11 , mi

the orientation and angular momentum of the rotor. Due to this

similarity, equation 15 shall be called a Boltzmann-type

equation.

2. Derivation of the Conservation Equations of a Rigid Rotor

The expansion procedure of Enskog may be extended to solve

the Boltzmann-type equation. We begin be developing the

conservation equations for a gas composed of rigid rotor

molecules.

Let a qa ,t) be any scalar, vector, or tensor function

of the molecular momentum, position, and time. The change of T :,"

"- per unit time per unit volume at the point q due to collisions
a

is

18

where n is the number density such that

N 19

By equation 15, we have:

JT(I 4T1~cC4±...j~ ,.20 -

where the right-hand side of equation 20 is the change of T per
unit time at the point qa due to molecular flow. By simple

N..

9L!
.-4

4F e 'e..



manipulations (see Appendix E), equation 20 may be transformed

into Enskog's general equation of change of the property %

Ta q at):

Note that the number average of the molecular properties, Bja•

are

* .10.~~~.% ;..~ 1( 3-~t:

~3~u,1-2,-22

Unless noted otherwise, B. will now denote BA

For properties which are conserved during collision:

23 1.I

The conserved properties are the number of molecules (or mass),

linear momentum, total angular momentum, and energy. Thus:

1JZ r?

where : .2 o_

16 L % . %-

Upon decomposing the momentum into a mean component:

10
6.-.-..'-" -. "- 

o° 
9..... ..... ..... .... ..... ..... ....



and into a peculiar component

11* ~25

4 4.

and substituting for each conserved property into equation 22

yields the four conservation equations: .

i) Continuity Equation:

WI' 26

ii) Conservation of Linear Momentum:

'S ! ._ _, _.. ,._; , _ -., , s ' -'
r -. 1

iii) Conservation of Total Angular Momentum: -.t

JP. .-

iv) Conservation of Energy:

- yj 'i~i .A... 0 29, .i

4-.29

N IN

4 --. .. -

" . .4, .

rm+a . .:L.Z'' + 'L .-'2 - \jm2 - _ .Z .+ aS LJ . . ". + L ". '".'."+"+-. yt _. m" -+" +.'P WI . : '



where the subscripts have been deleted for notational ease.

Equations 26, 27, 28, and 29 are fully derived in Appendix E.

Equations 27 and 28 show that conserving linear momentum and

total angular momentum at a point is equivalent to separately

conserving linear momentum and internal angular momentum. He may

61 thus combine equations 27 and 28 to yield:

___ l~o& ~ 1iL~ .. A =030

The five-space stress tensor and the heat flux five vector

are by definition:

22

respectively. Both 'T. and Q.are determined from the

distribution function, f

3. Enskog's Expansion Method of Solution

Under Enskog's expansion method of solution, the*

F. distribution function is assumed expandable into the convergent .*

I.. infinite series:

ff+f?+f2+ . 33

12
*!

p...P

. where*. th usrpshv endltdfrnttoa ae .-

Equtios 2, 2,i.8, and 2 are fully derived in Appendix E.~ ~-
Eqatos 7 n 2 so thtosrvn liea momentum and*



The present analysis derives the first two terms of the series,

f and fo.

Let the Boltzmann-type equation be defined as1 :

where _ -"-

,, - 35

and ~3

Enskog supposed that when the Boltzmann-type operator, {,
Iih

operates on the above infinite series expansion of f, the r

term of the resulting series depends only on the first r terms,
i.e.

The functions are also assumed to satisfy the separate
conditions:

38

Enskog subdivided such that

S 339""2

13



Equation 40 may be recast as: -,

The general solution to equation 41 is simply the sum of the "

particular solution and the homogeneous solution. Let the

homogeneous solution be .

where is the homogeneous solution to equation 41. Then:

and therefore 0 must be a linear combination of the conserved

properties of a collision, i.e.

rx Le 2.r '
CA + L PL. + Q' afLIzVI 44

where m,r and are scalars, M is a three-vector, and ,

is a five-vector. The above constants are chosen such that

for i=1,2,3,4; r>l 45

which ensures that the average values of n, T, and PO are given

by

for i=1,2,3,4. 46 ".

.1...

4>..,..:



The preceeding brief overview of Enskog's method of solution
brings us to the important subject of the conditions of

solvability of equation 40. If equation 40 is satisfied, then

W -) for i=1,2,3,4. 47
~~[-.

By the developments of Ref. 1, Jr is divisible into pairs of

terms such as J(fpfq) + J(fqfp) plus a term J(fPW) if p is even.

It is straightforward to show that the integral of the product of

T and these terms vanishes because

bb-'"

during a collision. Thus, a necessary condition for the solution

of equation 40 is:

r- %
C3 for i=1,2,3,4. 48

Hilbert1 proved that the above condition is also a sufficient

condition for the solution of equation 40 by showing 1 (0r) may be
expressed as ,.

where S(p is a symmetric function of p, Pb" Such a proof is

not yet available for the present case. However, it is fully

expected that

16. 50..

15
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r V

'V

where dqR is given by equation 30 is indeed expressible in the

form of equation 49. By following arguments identical to those

of Chapman & Cowling', it is straightforward to show that

51

It remains to show that

where R(p,pb) is symmetric with respect to P, Pb" This is

strongly felt to be true. It will be shown that f fb is
- -# , '

symmetric with respect to p, Pb" Since inverse collisions exist,

the problem reduces to whether or not dqR is symmetric with
-.. ..., .. -4:"- -"

respect to If dq is not symmetric in , pb, then the

principle of objectivity would be violated, i.e. the final answer

would depend upon one's choice of the origin and coordinate

system. Physically, this does not happen and one would therefore

conclude that dqR is indeed symmetric in p, Pb" A mathematical
'R is .

proof is required, however, to rid the present work of any
ambiguities in this area. The present work shall proceed on the
reasonable assumption that equation 48 is a sufficient condition
for the solution of equation 40.

16 ,_-.

AAA.4
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4. Derivation off

The first term f0 of the series expansion of fis easily

Loufld.By Enskog's method ot division,fl' =0, and tne Boltzmann-

4 type equation is:

Thus, in general1

54

* ~or **-

*Equation 55 can hold in general only if lnjf I is a linear
combination of the properties conserved during collision. These

properties are T for i =1, 2, 3, 4. Thus:

2t~ 2.56

+ + 1 2S 57

*By the development of Appendix F:

-A 17



where B is Isin E, not 1/2. The equilibrium distribution

function is built on the following definitions:

l~?oit. 60

Fli~~. .S"T.

5 Derivat ion of th

The evaluation of the second term, f is more difficult.

By Enskog's method of division

where b operates on to only. Since fo is a function only of the

peculiar momentum, , we may recast c in terms of as:

ILI_ 4s ,. - _ 62
',t 

.A %li •

The derivation of equation 62 is not presented as it is identical

to the derivation presented by Chapman & Cowling'. The

equilibrium distribution, f0, is already known and the first

approximations

may be found from the conservation equations and Enskog's

subdivision of The conservation equations, equations 26, 30,

and 29, may be recast as:

--. j
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r " --. ,

edt 64

L " [l 'i
* rit

respectively. Enskog divided these time derivatives as follows:

A 66 ,~~'.. , ,

where A may be either n, p0 " or T. The division of the right-

hand side is:

67

for r>l 68

J-_j for _l 70

T. -I-7

St for rl 70

'- 71
A *" ,-
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where

and. .r~74
A.. Lt-..-73

ai 6 ___n 63 74 ..e:

D L J4

75

Byhefnring heo firsth eve temso-teinega so

Bdeqtapproximation to the substantive derivative 
as :

76

77r

When rPiszero, onl."1e." o

9ndby he efiitins nd esutsof thpeni Fnerad

*equations 74 and 75 survie th"itertin. Ths

Bn by the definvtions ean resuts of Appenx F a

e7s79

By defining the thermodynamic pressure as "'"

4'4
...
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p 80 -

then

h p £4 81 %9

The thermodynamic pressure may not equal the hydrostatic

pressure. However, the hydrostatic pressure cannot be deduced

because Maxwell's relations are strictly valid for a three- -'"

dimensional space only. Thus, Maxwell's relation:

A 8lnZ

cannot be used in the present study.

Substituting the first approximations to the heat flux

vector and the stress tensor into equations 76 and 77 yields:

P~. ~'~-S~-82

,. -2T ,83

Substituting equation 82 into equation 62 yields:

4- ILA It 4+; 84

Appendix H reduces equation 84 and finds that C1=0 is equivalent

to:

w.Yi, 10 n±-L 85 A

* where the reduced momentum, is defined as:

21
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I. 86

Appendix H derives the form of 01 as:

.,,.1 
87

U!

,,, -. _ I

where JO?) and K((P) are scalar functions of n, and T.

Substituting

for ? in the definitions of the five-space stress tensor and the

heat flux five vector determines the second order approximations

of '..and Q Appendix I details the derivations of an and

5'.- 1)- k{ 1 .;

'%2 ",

The resulting expressions are:

whe resutn xrsin r:u

I 90" "''

",4.

whe2TeJp 
-

Z Z
, _ % { 0  0'-. ..

Swhere .- .
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where

93

Appendix J evaluates V and X through the use of Sonine

polynomials. Assuming that the first term of the Sonine

polynomial is of sufficient accuracy, Appendix J shows:

AA2Th ~94 *. .4

.. 4 -..,'z), V, kT 95,..._

f'~= *~2±96

where the terms a1 and b can be evaluated only when the

intermolecular potential is known. Since the intermolecular

potential of the present problem is simply a pair of Heaviside

step functions, a1 and b11 could be evaluated. Such an

evaluation is likely to be very difficult. Given the assumption

of impulsive collisions, the evaluation is also prone to be in
significant error with respect to the experimentally measured

values. Therefore, neither a1 nor b have been evaluated. .

A.

,. , o'4.
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SECTION III

SUMMARY OF DERIVED EQUATIONS, CONSTANTS, AND ASSUMPTIONS

The equations of motion of a diatomic gas whose molecules
may be modelled as rigid rotors are.: .

1) Conservation of the Number of Molecules: "o',

2) Conservation of Total Momentum at a Point: '.

1 ' .j. Ii. S

whe re : "a-=0..-

TSECTIN II L

3) Conservation of Energy:

where-

- I jT .. -, .,

244- - .,..-...,..y.

a.,, , ;- .
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a, .. a ' "k
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4) Equation of State:

where p is, by definition, the thermodynamic pressure.

Additional quantities of interest are: I.:'
i) Specific Heats: .

ii) Ratio of Specific Heats: <5

iii) Prandtl Number:
6%'.

iv) Equilibrium Distribution Function:

°~ ~ e IrZ,: t,9,2, Z ,k T)".

Most assumptions made in the present analysis are identical

to those of the derivation of the conventional Navier-Stokes

equations. Those assumptions unique to the present analysis are

listed below:
e e

1) The molecules nonpolar. This amounts to setting Fe F = 0.
4 5

2) The intermolecular collisions are impulsive.

3) That

is a sufficient condition for the Enskog expansion method of

solution of equation 15. This appears to be a reasonable

25
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assumption based on physical arguments, the form of f o, arnd the

existence of inverse collisions. Strictly speaking, however, the

sufficiency condition is an assumption and a rigorous proof is

needed.

a-

"a^ 
.I

A- . d

26a



SECTION IV

DISCUSSION

We have seen that a nonpolar diatomic gas whose molecules

collide impulsively obeys a Boltzmann-type equation, namely

equation 15. The differential portion of the equation is easily

developed by substituting the well known Hamiltonian of a rigid

rotor into the Liouville equation. The collision integral is

developed along the lines of Kirkwood's work.'9 Appendix B

develops the actual governing equations of motion of a binary

collision between rigid rotors. Appendix B displays the
fundamental point that inverse collisions exist as long as the

collision mechanics are consistent with the Hamiltonian. The

rough sphere molecular model6 suffers in this regard, as the

Hamiltonian does not account for the strain energy of the rough
sphere during collision.

The derivation of the differential portion of the Boltzmann-

type equation is not the straightforward extension from three

degrees of freedom assumed by others. ,' 8 In fact, an additional

term describing the precession of the rotor is generally present.
Only when the molecules are nonpolar and collide impulsively does . .

this precessional term vanish. Furthermore, it is unlikely that

a general Boltzmann-type equation can be derived for a rigid, six

degree of freedom molecule. Consider the classical Hamiltonian

3for such a molecule:

H2 +2p 1 (P pcose~cosi _ pssinsinV]2

H = 2- P -
2 2 sin '

2 +. 1 :2
21 Bsin2 ':--'o C
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where IA  IB and IC are the principal moments of inertia; , 4P,
Ar~ BF

and , are the Euler angles, and
¢, \.,, -~

0<6<1

0.__ < 2 w .
O.:-:--:.

Substituting the above Hamiltonian into the Liouville equation

produces a complicated equation in f. There are many terms

describing the precession of a general rotation to a rotation

about an axis of minimum or maximum moment of inertia. These

precessional terms do not disappear when the molecule is assumed

to be nonpolar and to collide impulsively. The rigid rotor

molecule thus appears to be the most complex molecule that obeys . ..

a Boltzmann-type equation with a minimum of assumptions.

Molecular models of six degrees of freedom and more, such as the

non-rigid rotor, the symmetric top, and the asymmetric top, may

require an approach based upon a pair or triple distribution

function.

The assumptions of the present study mirror those in the

development of the Navier-Stokes equations, except in four

instances. One of the assumptions different from those of the

Navier-Stokes equations is the basis of the present study, namely % %

that the gas molecule can be modelled as a rigid rotor. The two

additional assumptions of impulsive collisions and nonpolar

molecules eliminate the precessional term from the Boltzmann-type

equation. The fourth assumption that

is a sufficient condition for the solution of ..-

5.. 28 5
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is critical to the development of the stress tensor and the heat

flux vector. If that assumption is false, then 1(4r) is

asymmetric with respect to Pa and Pb" The collisional equations

of motion would then change upon an interchange of the roles of

molecules a and b. The physics of the motion, however, does not
depend upon how we select molecules a and b. Therefore, this .,.

sufficiency assumption is probably correct. A rigorous proof

similar to Hilbert'sI treatment in three degrees of freedom is _

required, however, to close the discussion on this issue.

The stress tensor is expanded in Fig. 1. Those terms

containing angular quantities, e, 0, Ie, and I, are periodic
because the Euler angles are periodic. Also, there are seven

coefficients of "viscosity". These coefficients of viscosity and

their orders of magnitude relative to the usual shear viscosity,
v, are displayed in Table 2.

Table 2. Relative Magnitudes of the Viscosity Coefficients

Coefficient of Viscosity Relative Order of Maa'nitude

pJ/ r-2 1---10

prg 10- 10m

rg / ~~10 - 1m  ""
pr 10vmi010 - ; .-.-.

1g 1

T p/rg 10- m

-'.4

IV

29:9
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4 ''.'.

The molecular radius of gyration is rg. The relative orders of

magnitude of the seven coefficients of viscosity are based upon a

typical value of rg of 1010 meters. The first three columns of

the stress tensor generate changes in linear momentum. We see

the periodic terms probably contribute negligible changes in

linear momentum because of their very small coefficient of

viscosity. The periodic terms will perhaps be significant only

in shock layers where the gradients are large.

One should also note that a gas composed of rigid rotor

molecules may have a bulk viscosity. The bulk viscosity will be

due to the rotational degrees of freedom responding to energy

gradients at a rate different from the response rate of the

translational degrees of freedom.

The derivation of the Prandtl number is unfinished. The

ratio of al/bll is unity for the rigid, smooth-sphere molecular
1 1

model. If this is found to hold for rigid rotors, the Prandtl

number will be .8 -- a mediocre prediction. See Table 1.

The present work forms the foundation upon which a study

into the properties of a gas composed of non-rigid rotors can be

built. It would be most interesting to establish the Liouville

equation in terms of a pair-distribution function and then

substitute for the Hamiltonian of each atom of the rotor. The

Hamiltonian must include the quantized intermolecular potential

that holds together the rotor. If this approach is possible not

only vibration, but disassociation, could be included into the

governing equations of motion. The resulting equations should

model the important real gas effects of hypersonic flows.

3.. 1...

31 -.. ,
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SECTION V

CONCLUSION

One may develop the equations of motion of a diatomic gas by

substituting the Hamiltonian of a rigid rotor into the Liouville

equation. The equations mirror the Navier-Stokes equations

except with regard to an additional two equations conserving
4.%

angular momentum, the stress tensor, and certain molecular

constants. The assumptions of the present derivation are

identical to those in the development of the Navier-Stokes-- %

equations except that the molecules are nonpolar and collide

impulsively. Intriguing because it resides in a five-dimensional

space, the development is a stepping-stone to a study which will

include the vibration and disassociation of a diatomic gas.

3'2.
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APPENDIX A
Kirkwood's Development of the Collision Integral
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4.11W1.k-. K - 17 7.6- 7- .1 - ~ -7 7 , z 7. . . . . . -. -

J /

By Gibbs' postulate, the ensemble average of any molecular

function, Y(PNPqN) is the macroscopically observed value:

1.61 A. 1

Kirkwood8 argues further that the measurement of any macroscopic

property is an inherent time averaging operation. Therefore,

• .,o ..

AA.2

also shows that the measured value of any molecular function, -.

T(p q is .,,

% -"..o

A.3.

where htics

dirtribution function leads to: t ocli o

A.5

34.
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Through the use of the Dirac delta function, the collision

integral may be extended over all N-space:

(( A.6 .

where

The subscript o denotes a value at some initial instant of time,

t. By the principle of conservation of extension in phase space:

9Y

T" Nli(t* A. 7
0 Q6

The gas shall be considered sufficiently dilute so that

binary collisions are the sole mechanism of the collisional

transfer of molecular properties. Since the collisions are

impulsive, the intermolecular potential is a set of Heaviside

step functions. The potential due to any molecule a is zero

outside a certain volume of influence, V. Therefore, in the

region of configuration space exclusive of.4.

the gas is in "molecular chaos". Kirkwood shows that for a

dilute gas in molecular chaos:

a041

4. l'-- 

• .'b'3A
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By way of equation two of the text, this leads to:

Since the intermolecular collisions are impulsive, the time

S' interval T may be made arbitrarily short. Thus: --

A.10.

Assuming the above to be true for .

equation A.9 may be integrated at once:

TT , A.11:-.:.

By Newton's second law of motion, Kirkwood recast the collision

integral as.

Lj!tS ~ \~ A. 12

jjj-~ ~ - ~ ,L) '(~bo~~~?&~A.13

The gas shall be considered to be composed of identical

indistinguishable molecules. Equations A.12 and A.13 may be ,S

recast to apply to molecule phase space, p-space. Noting:

36
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.(7 A. 14

and

leads to:

(IS44I= A. 17 . -

A. 18

Without any 1oSs of generality, q may be expressed relative to -

ao Denoting this relative spatial coordinate q Ro and dropping -

the superscripts from the p-space probability density leads to:

AuN A.19

This may be integrated at once:latie.t
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since, by Newton's third law of motion:

%q- %

By invoking the principle of conservation of extension in phase
space and by performing a second time-averaging operation over T

gives

S-- ~A. 21

It can be shownz that

6 .

As mentioned previously, that the collisions are impulsive allows -.

,..-.;A.23

Thus:

+ A.24
4.. i'..0 A.25

a_...- .
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APPENDIX B
* Equations of Motion During Collision

-I,

'a'-4

a.

-4
4

P

J
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a-

aa.

'p.,

5,
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a.
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Without loss of generality, we may locate the origin of our

coordinate system at the c.g. of molecule a at the instant of

impact. Further, we may also rotate the axis system to align x a

with the axis of molecule a. Thus:

V %

A
where~pI~ TVL F1to5

40v



The equations of motion are:

~V: ,qV~s3~B. 1

I* V 1 ~' B.2

uW x X. B.3

0 B.5

Assume:

i_)

IT
The above assumptions in conjunction with equation B.5

yields
-J.N

~ ~ B.6

-, B.7

Z3~' ,lO. T B.8

There are four equations, B.6 through B.9 in five unknowns, ,

;" a b" r'a Wb" The fifth equation of motion depends upon the

rod material and surface. The rods shall be assumed to be

perfectly elastic and perfectly smooth. Thus, the components of

41
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I. L

the relative velocity tangent to the "collision plane" are

unchanged by the collision while the normal component is

completely reversed.

The plane of collision is that plane containing the three

vectors xa , r and r*b. Let the normal unit vector of this plane

be denoted as iN The two tangential unit vectors will be
A

denoted 'TI and iT2" and where iTl is oriented such that
1 la= . Thus, the final equations of motion are:

4" . " . N B.10.

Vg'LT)-T " ' LT) 'TI B. 11 """.;-
..- .

I --B. 10

and the relative velocities before and after collision are:

B. 13

dIV -V J ? L

B. 14

One can now solve for , and then W and ." By

equations B.6 through B.9:

.Thus: %

By equation B.13;

42
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Substituting equation B.15 into equations B.11 and B.12 shows:

0?4 c-+ -L§ .L -  4r, B. 16

Equations B.16 and B.17 can hold in general only ifIL rt and 'LTr2

which also states 11k and T16 Therefore, ]ill N • We have found

the direction of 5; now we must find its magnitude. Substituting

equation B.15 into equation B.1O yields:

Since r J r b 0 a~Tf.L 2~'
',:t. A.

Since 1-LN " -+i , define: A 'LN Ill which produces: .. ,.

9.• .. B.18

Thus:

2T I v l B.19

Substitution of equation B.19 into equations B.6 through B.9

yields:

4'-. .

434
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M -A. r N .2

-I 2.1 B. 21

rr

~ 214B..232-

The above could lust as easily be cast in forms where the

primed variables are the initial quantities. From equation B.10

and the definition that J.LN be positive in sign, the .

dircton f Nis reversed for this case. Thus:

VON___A"__AB.24

l(T.2YV 8.25
% %.

Ic ~'+2.1 B.26

B.27
44



Therefore, given a direct encounter where the initial velocities

are b a w and the unit normal of the collision plane is

Sthere exists an inverse encounter with initial velocities

*equal to the final velocity of the direct encounter and with a

* unit normal vector -iN of the collision plane. Other than

* reversal of the collision plane unit normal vector, the geometry

of the two collisions is identical in terms of r, r F rb and z.

45 /46



APPENDIX C

Elemental Five Volume in Spherical Coordinates

44

4d

do



By the method of successive projection:
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APPENDIX D

Integral Identities
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"Va

P% %.

Consider the integral
4ft

D. 1

where is the five vector

LoD.

of magnitude C. Let 0(C) = F(C) U By symmetry:

- 0., - '. -G," ,- %

Then,
IIAI .-LCd ' L .- '

~)4V W4..JE~.-iu..~-..?
"-t -" D .4 !)F- C)

-U... .

and

DF.C5.4 e 4 D."5

because the integrals of the non-diagonal terms vanish as they

are odd functions of U, V, W, R, or S. Thus .

UD.6

For any vector i.)

IC.C

F- r-. D.8'U.,,

Next, let O(C) = S F(C). Where S : Ccosp. Then: ...

54.
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D. 9~

Then: ' . -

D. 10 .

where N is a factor to be determined. Thus:

7 35 D. 11

and:

jrc~dC.~jF~CC.D.12

Thus : .. ,

and:

FCC .E RO CD.14

and 'v [.

Co A; ZLC4 3

___ D.16

2i. N D. 1
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Integrating with respect to 0:

Ip".. .. Ii " ~~D. 19 ' _

__ D.20

IL//cS D.22

,' .

and next with respect to ot:
'...

CbS. El D.23
-<..

D.25

.- - N S ,s D. 26

I"' ~yi eid ing <"

92S'- NO R D.27

The integral

[COU CC WL.- ). D.28

where t may next be evaluated.

For a typical diagonal element:

.

~~~56""-
% 

.
• p """""""'" , - - 4 - * . " . ;" " ° . -"•*,"-"-"." " " * . .- ," "," . ,

-, , ... ; ....-... "..,.'.'..'. _, .. _,"•" -""" - " " --p - '_,'_'"".,- ..- '"" -" L' -> "_' -2. "
'. .. ,._,Q , '



-, -- .- . r *,---. .,. . r. - r,- ,- * " r[, , W ~ " q-iq-'W-. e-, " "* v" ." a" a Jv -- * . . . . . . . .r'

-.

'% %.

Si D. 30

- D. 31

F(c)UW:A)4P FC D. 32

S.
while for a typical non-diagonal element

IrLL)rLSuJB'- "- D.33

D.34

FCL)CIAD.35
' r..

* ~Thus: ,. .

RO FcO )N E D. 36

Since

-LCIMc1 D.37 '

then:
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D. 38

and

I F-C60Cci jF(cY) -Z.4I D. 39I Therefore:
35 i~jD.40

-qI

.161
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Conservation Equations
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From the Liouville equation

ei L LA ! E E.l1

where B. B .(q.) is generalized force/torque, and

=- I-> X 13, .
K 32

=33

* -1:: 4 .,,2
rsi"21 8

,,.p

Let '(p,q,t) be any function of the molecular momentum, position,
and time. The function may be a scalar, vector, or a tensor
function. The rate of change of T per unit "volume" due to
collisions is:

But:

+ cA E.2I

and, expanding:

, E.3

'p0

-A.N,.1.



E.. 4

since

Giving:

+ -+ • E.6

If ' happens to be a conserved quantity, then A = 0. Such

quantities are mass (for non-reacting gases and neglecting

nuclear effects), linear momentum, total angular momentum, and

energy (for non-nuclear effects). These conservation equations

follow.

i) Conservation of Mass:

Under the above stipulations, this reduces to the conservation of

the number of molecules. Thus, T 1.

Equation E.6 becomes:

E. 7

61
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B is now 1/2 for the above equation as this is the number

average value of B . Next, decompose the momentum, p, into a
5

peculiar component, , and a mean component P0. Also,

: ('p t. Therefore:

E.8

Equation E.4 is thus:

9. %I

E.lO

ii) Conservation of Linear Momentum:

For i = 1,2,3, Ti = pi " whereas T = 0 for i = 4,5.

Equation E.6 yields:

4! -V+ i0. i!. I- where Tj1 E.l1

Since =(p,,t), then p p(q,t). Thus:

Ji l. . E.12."..':*. ,."

62
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-° .°

-T,, -7i,, V '

-. 4 E. 13

* ~4OL4~) ~E. 14

0 M.~E 15L~4

'A ) .. L E. 16

By continuity, however,

JL -=E.17

iii) Conservation of Total Angular Momentum:

1. 3

Denote T as I for k = 1 - 5. Equation E.6 yields:

i'
k k

J ' E 18 .. ..

E.8.'

63
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.pV .~. , ~ d'.~ '~d. ~ . W. bw F d -- .Y r. m u , . . "% , - '-ir -,w .:i.-

TZ 4 E. 19

~ -% 1 %"---

Consider first i = 1,2,3. Then:

- fB. I".o I - -
' ( o E.20, - ,,, . .,,,I.-.: . .

• ...
% %

* -. ~-- i~E.23M,~ Ft," FL f.2

,._,_

~vi - 0 E.25

6 4,..
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which the conservation of linear momentum crossed with 
the

position vector. Thus, for i = 1,2,3, the 
conservation of total

'-...'

angular momentum equation is redundant•.

For i 4,5, 1,i  P, and by the development of the

conservation of linear momentum 
equation: oewh eI

where one must remember 
dna 4,5.

i v ) Ca t o n s o fv l i n o f E n e r g y : e q u a 
i o n

JL I-

NOW : 1'= ?U:

Equation E.6 yields: 
.i:;

2i" "4' -E.27

1,2 _ 
E.28

L.~ 126 1z~L LL;~i- -I

Also: _-__ _"__-"

WAA
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p. 2 . + E. 30

Jg~ ca where '.)c -E. 31

.. . ..

Thus:

it ''"71

By the conservation of linear momentum and total angular momentum

equations:

_L .- _1 _ VILL E.3'
S"E.34 --

Consider equation E.33 first.

+______ A E.35 5

1.. .L1 A
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.P...'-

it - i

By the conservation of mass, the above reduces to:

P.P

9L E. 38

But f!L 12Sj 9 51T Thus

Il J-.LT J-- 2 1 L E.39J4

By the assumption of molecular chaos = 0. Expanding the last

term yields ]

-- -- ,..h ' <..

.-. • %..,

L rLLd E.40

Thus:

~~~Again, by the assumption of molecular chaos JP =0. In _"

~combination with the conservation of mass equations, this yields:

67~ L .E"7
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= •.-. °J -

7o.

2" E. 44

*i,3~- OE.o2

Next consider equation E.34.

)--I

• '. .Jj'BLA. __ S BJ -"-
jj 29- L~J L2

.E.45

: By the assumption of molecular chaos, this reduces to: "

*~~~~~~c NetEonie.quto4E3.6

' 77, ,i % J" LN.,."'

Expanding:

'.-.. "'E.47

By molecular chaos, we have:

68
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SL i
"1

- ~ { I ' * 
oI..C E .4

Adding equations E.44 and E.48 yields:

2 LJ d 1 .J.k L 2 k [ o-~
E.49

which by the conservation of linear momentum and total angular

momentum yields:

L- 1f.- -o E.50

J.)

S.1. 1

:.:,:.::.

is . .%

,% ,
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APPENDIX F

The Equilibrium Distribution Function - :

4 .~~ g .1 \

4 N,.:

.4. ., -

IS . 4 '

'4 "

"0 -''

4.i
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I e

By Enskog's expansion method -

--- 0 .%" '

which leads to ,-.

where I"--

lb ,I C-- ,.,e Sf$.0440 Jai, F. 2

The only difference between the above collision integral and the

collision integral for spherical molecules is the dimensional

rank of the vectors ng. and . Boltzmann's H-theorem is rank

independent and therefore holds for equation F.2. Thus,

I, b F.3
•. . .,

or bF.4.

-0Since lnf is both a scalar and a conserved property of the gas,

lnf ° must be a linear combination of the four conserved

properties Ti, i =1 - 4, such that

kw- F.5 IAN

for m 1-+3; ij,k,l = 1 - 5 and where

72'..
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-~ - - - - a~tC 
16 V' Iw~ V - -q

a five vector. Define:.

so that equation F. 5 becomes "' ':

.5-o 5'.

I,, ° FL + PIL I , I; ( ./ L. F. 8

Equation F.8 may be recast as: ...,

F.9..

where =0. Thus : ,'

,-...*~L~e~.~' 4  ~ L~: [',3F.60

fieDefine:

X. piO F.11

I)By Enskog's method, the average value of momentum is defined as: ;

'.F1

;'. ~~73 - .,

~ ,%. 4 .o'%'
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hn

F.. 14 '

f- p&.

I9XI
Thus, we must have:

dLO

for any of the integrals to be finite. Further, the first

integral vanishes because its integrand is an odd function of

Thus:

2 F.15

or:

W - F.16
2L ~

However, by definition:

'~ ~2L4~ jF. 17

which leads to
W . ,. ,.. ."-O V.'

Thus, equation F.11 becomes

, . F.19

Therefore, X is the ith component of the peculiar momentum, or:

.X F. 20

74 -N -""
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Therefore: Ni I F.21

Now: F.22

From Appendix C: F.23

where a = F.24

Consecutively let: F.25

F.26 m
then F.27 ..

3

*'/a F.28b

A F. 29 -

Finally, the temperature shall be defined as:

This is the usual kinetic theory definition of temperature.

Thus :

V -

F.3

o . .,"
a .%

7 F.32

75
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I% ,

which by Appendix C may be recast as:

.F.33

Thus, when the values of fo and oL(x) are substituted into the

above,

kT F.34

where acd2 F.35

In succession, let: F. 36

AqF.37 -

then

F.39

f~ir

sI~T(2L~~ .- 2RP1/2.F. 3

* Thus:

F..40

-o-'

and to is:

1 .

"i n sucesio,-et F.41

76
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APPENDIX G

Derivation of the Thermodynamic Properties of a Diatomic Gas
.4%

F 4**

F. .. ~4~4

* . .
F,

*44

44

a.

a...

4.~

~44*4

'a

A.

#4
F4

a,..

F,

.4

9

4.

V..

4*.
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The desired equilibrium properties are calculated from the

partition function of the gas. Partition functions exist,

however, only when energy is quantized. They are, therefore, .V

outside the slope of classical mechanics. This is a problem with

classical mechanics as a whole and is not peculiar to the present

analysis. Therefore, the works of others shall be followed by -

assuming a classical partition function exists and is defined by:

=- G.Il..

G.14

For the present case of a diatomic gas, g is five. Thus:

.1 -t, G.2

G. 3

where V is the five-space volume. Using the results of Appendix

F, the classical partition function is:....

~* G 4 ....
21 T.~l~lXj :::;I

Z .

S V ( 623'.'"".

The specific heat at constant volume and the specific heat .

at constant pressure are derived from:

FV )

80.. ,

• ,.',, ...



C, v Q G.6

where U is the internal energy of the gas. The internal energy

may be expressed in terms of the classical partition function as

G. 7

Thus: NkT X -T 11T G.8
T 6/2-Z , -'-

Tfe Z . T rios f.e

1" .e-

which yields G.9-

and in: term G. 10 ""l, '-,ifco

for the equilibrium specific heats. The ratio of specific heats -..

Expressed in terms of the classical partition function, the '--'°

specific entropy is:

S Nk I + 4,,, )vJ G. 12

Thus, substituting for Z yields:

S ~ L~h~ 1 I - G.13
z..% %

The volume in five space may be expressed as the product of two

volumes

-1

81 .5.' _
I-R



V vvt G. 14
.- .(

where V is the typical three-space volume and V is the two-
3 y2Jb* 0%:

, , VI

space 'volume' of the angular coordinates e and *. Thus, -d'--,

equation G.13 is:

S k. j~(~ 11iI+~~V G. 15L~m Ia k/"" N ' I +1, I.' :-,

The volume, V , is simply 4w - the solid angle of a sphere.

Thus:
"',b<
.' ,.

.Ykj~+I~( Lk)!4 V3 kc'jTI G.16

As known from quantum mechanics, G.16 is correct for a gas %

composed of heteronuclear, rigid-rotor molecules. Quantum .

mechanics predicts that in general

s- ~ 2' k. Nz +k . k,- l---....S~Nkz4I~~T~ 1 IG.17

'..? ".'

where a is the symmetry number such that:

a = I for heteronuclear molecule
a = 2 for homonuclear molecules.-"

The symmetry number arises out of the requirement that the wave 1
function of a homonuclear molecule possesses a certain symmetry *

with respect to the interchange of the nuclei of the molecule. .

Classically, the symmetry number ensures that one orientation

identical to another orientation does not contribute to the .%

entropy. A rigid rotor, for example, has identical orientations

82 --

* t
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for 0 = w, = 7r, and e =w, = 2w. Equation G.17 predicted

the values of the specific entropy given in Table 1 of the text.

\. ..~

I.'-..

.4.

83/8
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APPENDIX H

Development of the Second Term of the Expansion

of the Distribution Function

.P
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Since f can be expressed as a function of Pi. qi' and t, the -

Boltzmann-type equation may be recast as:

_- . 'a-

r~J. ,.." . ..
IH.

The Enskog expansion of ' yields

•H.2-

As outlined in the text:

:' ~l-o J .-.

where p is the thermodynamic pressure defined as p = nkT.
Substituting the above into H.2 gives

~-PAV A. J ~ H. 3

Since,
.-- $.%

then-.

A., H.-4

• ..%.% .

Thus,

86 " "
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-, - -.5- - - .-~ -. -

?,..kT H. 5

and -.. -"-

D*• o.."2 Y T

H. .6
PP

Expanding the first right-hand term:

A ,,T5  1: D. D H.8
Dt.

and substituting for Po_.. from the development of the text yields:

Is -S

DL
- DKT'I 'IiRI I.s3-\ -

" ,~t2 T) L " H.9

Substituting for oxm' from the text gives .ftm-.tr

-- " 0 H .1O 1

5'. 5,45'.

~~TO the first approximation then, the variation of temperature ~
,. .j-' 5 .*-

dduriuiq the motion of the gas follows the adiabatic law: -

" , ~H.lii :.l

which implies

4*7

87 -',
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£ H. 12

Equation H.7 becomes then:

DL _ 2~L~aTH.13
D'L Z-EI

Since P. # P (t), then:

; -F D0T' P, DJ H.14

Substituting for .bT yields:

_ .H.15
Do ssilzT J L NJ -

The sum of the first and last terms of equation H.3 is: ,,

SH. 16 '.;'H.16

The bracketted term is a non-divergent tensor which shall bep~p..
designated as Thus, the above equation becomes:

__-\L- ~ H.17TL k J JI-, ::I:!

The second and third terms of equation H.3 are:

4' LIZ~~ 4 H.18
SJ~ ePL r, cjhkTB.9 4  ~i

88 ImI
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% "

which by the definition of the thermodynamic pressure is:

H.19

H..20

The bracketted term is:

I~)r4I~I ~r~'4~~1/2I ~i&~TH.21

which upon substitution into equation H.20 yields

; i LTH.22 4

-'pa P JT 1JH.23

~ ~) H. 24
i1

Equation H.3 is thus:

--~7~C a 1I~L Y Lxz i :..H.25

89 .- .-



By Enskog's solution method:

Thus:
.01V

4. I'dJT e'~ kL~

Following Chapman and Cowling1 , the peculiar momentum shall be

non-dimensionalized to the reduced momentum. The reduced

momentum is defined as: . .. ,

? (~TP~z~H. 27

Defined in terms of the reduced momentum, the equilibrium

distribution function is: w,

-'12..- -
SH. 2r8-

while equation H.26 is:

H.29

Let us initially define :.

H. 0..

such that-- F.

* 90
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g
h .%

B 4 H. 31
,' -t

Now:

H. 33

- __-,acft ( I. ' H.34

%.

for 1 = 1,4,5

when 1 1,4,5 because the above is evaluated at a point in

space. The second integral is zero for all T because the

integrand is either an odd function of or it is a non-divergent

1 4tensor. For Ti and I' the first integral vanishes because the

integrand is an odd function of For T 5
, the first integral

may be recast as:

CO

where A is a constant. The solution of H.35 is:

H. 36

9.

91 ;. .
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*RR M Fo t. 0 -4-v

Thus, the conditions of solvability for the Enskog method are

satisfied. Therefore, since the general solution is the sum of

the particular solution and the homogeneous solution:

Iwhere 3" is a three vector and is a five-vector where:

[ ~~ ~ LV, k -. k%, -, 3 H. 38

A'

By identity, we may define

G 1kc,. ( rk L...l , k - 3 H. 39

;*W L-1 ,6

Thus,

~I!.126. H. 40

Since equations H.31 and H.32 are functions of , n, and T

only, then by arguments similar to those of Chapman and Cowling'

12 -\/2 H.41

< H. 42

92
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where J(Q) and K(T) are scalar functions of ?, n, and T. To

satisfy the requirement that the average molecular quantities be

solely related to f , we must set:

* = 1H.43

for i : 1,4,5

Thus, neglecting vanishing integrals yields

I.~~H = 44

j 4 H4

:1 5 + o H.46

Equations H.44 and H.45 imply that and (S are both zero.

Equation H.46 implies that&: and are equal and opposite in

magnitude for j = 1,2,3. For J : 4,5 " and therefore

is proportional to T and can be incorporated into the first term .

of the integrand of H.46. Thus, we may write:

and

I. H 2.48

44. .~
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APPENDIX I

Evaluation of the Thermal Flux Five Vector

and the Stress Tensor

a4
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Thermal Flux Vector:

By definition:

Substituting for fP .,-

.L J NJ 1.2

% r1.3

V\Bi 2J~ I JU

because the integrals of odd functions of vanish. Substituting

*ifor Pi yields -.

Equation 1.4 may be simplified using the results of Appendix D:

c:-2'VaT T 1.5

*a -Zr 1.6

or % 1.7

where '1,,u 1.8 '.. -

The Stress Tensor

By definition:
S1.9

4t



T t 41.10

*I

by neglecting vanishing integrals. Substituting for Pi equation

1.11 is equivalent to:

- .-

From the results of Appendix C, equation 1.12 is:

~ 1.13

which by equation H.42 is

1.14

1.15

In the notation of Chapman and Cowling :

11 Oi 1.16

or 2 -. 17 1.17

where: -T 1.18

Since the stress tensor has been defined as
GO.'." 

.. .-

we have for the second approximation: 
.--

IV

97
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I..'.

___ 1.19

3,

.
A.

A,

.3

'A-.. p.
3,

~. N

.3-

.- A.
3,~

p. *,3,d*
.3 *3

-N-

*3 .%

'As
'A

~

'A -PAP

~A
A.'..'

.3 9

.3.

a

.3

A. * .33.~

.3.
.3

.*

3.

.3'

'3,' ~

P. ,.%
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APPENDIX J

Evaluation of the Coefficient of Thermal Conductivity

and the Coefficient of Viscosity

k4%
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We have for x:

)' J.1

A linear combination of equations J.l and H.47 yields:

5A5-

which by equation H.31 is equivalent to:

-V- -s J.3 5

Summarizing for a moment, the coefficients of heat conductivity -e
and viscosity for a gas composed of rigid-rotors are:

The application of Sonine polynomials to the above integrals isvery similar to their application in the case of a monatomc gas.'.

Thus, only the minor arithmetic changes are noted below. The N'.

derivation again closely follows that of Chapman and Cowling'.

From equation J.2, (0= 0 and

5" l'.

where the subscripts on have been deleted for notational ease
since : .

we have: J .5

11 100
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The results of Appendix C lead to:

air yj e. SW)-~j~~ J.7W31 7ra :% %

J.9

Thus: o.,..

L24 
J. 10Y

and < 2.

. ',S2 . ,J,1l

At%' At"'
Likewise, the development of

begins with: 3.12

which leads to:

'S'rr 1 /) J. 16

,%%.

- + J. 14

Thus : .-

.9.." "A'"101
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.1 .

and
VT)r ,'A.~ 1

k1 J. 19

Lastly, the Prandtl number is defined as:

J.20

For a diatomic gas molecule, Cp = 3.5k. Substituting this into

the above along with equations J.ll and J.19 yields

I . :.. ..%
__ J.21

where the higher order terms of the Sonine polynomials have been

neglected.

,'o
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